TECHNISCHES MERKBLATT

GRILON TSG-35/4 H

Grilon TSG-35/4 H ist ein normalviskoser, speziell hitzestabilisierter PA66 + PA6-Spritzgusstyp mit 35% Glasfasern, modifiziert für die Erfüllung von thermisch anspruchsvollen Anforderungen.

Grilon TSG-35/4 H zeichnet sich durch folgende Eigenschaften aus:

- Hohe Steifigkeit
- Gutes Fliessverhalten
- Gute Oberflächenqualität
- Einfache Verarbeitung
- Hohe Wärmealterungsbeständigkeit
- Exzellente Ölbeständigkeit
- Hydrolyse stabilisiert

Dieses Eigenschaftsprofil erlaubt den Einsatz von Grilon TSG-35/4 H für Bauteile mit sehr hohen Anforderungen an die Temperaturbeständigkeit unter Medienkontakt, wie Bauteile im Automobil Motorraum und für den Einsatz im Maschinenbau. Hierbei seien Anwendungen wie Ölwannen, Ladeluftkühlergehäuse, Ansaugsysteme, Heiz- und Kühlsystem prädestiniert zu nennen.

EIGENSCHAFTEN

Mechanische Eigenschaften

		Norm	Einheit	Status	Griloi TSG-35/4 H
Zug-E-Modul	1 mm/min	ISO 527	MPa	trocken kond.	11.000 7.500
Bruchspannung	5 mm/min	ISO 527	MPa	trocken kond.	190 130
Bruchdehnung	5 mm/min	ISO 527	%	trocken kond.	;
Schlagzähigkeit	Charpy, 23°C	ISO 179/2-1eU	kJ/m²	trocken kond.	90
Schlagzähigkeit	Charpy, -30°C	ISO 179/2-1eU	kJ/m²	trocken kond.	7:
Kerbschlagzähigkeit	Charpy, 23°C	ISO 179/2-1eA	kJ/m²	trocken kond.	10
Kerbschlagzähigkeit	Charpy, -30°C	ISO 179/2-1eA	kJ/m²	trocken kond.	
Kugeldruckhärte		ISO 2039-1	MPa	trocken kond.	22 11:
Thermische Eigenschaften					
Schmelztemperatur	DSC	ISO 11357	°C	trocken	26
Formbeständigkeit HDT/A	1.8 MPa	ISO 75	°C	trocken	24
Formbeständigkeit HDT/C	8.0 MPa	ISO 75	°C	trocken	17
Therm. Längenausdehnung längs	23-55°C	ISO 11359	10 ⁻⁴ /K	trocken	0.2
Therm. Längenausdehnung quer	23-55°C	ISO 11359	10 ⁻⁴ /K	trocken	0.7
Maximale Gebrauchstemperatur	dauernd	ISO 2578	°C	trocken	130-15
Maximale Gebrauchstemperatur	kurzzeitig	ISO 2578	°C	trocken	23
Elektrische Eigenschaften					
Durchschlagfestigkeit		IEC 60243-1	kV/mm	trocken kond.	2 2
Vergleichende Kriechwegbildung	CTI	IEC 60112	-	kond.	50
Spez. Durchgangswiderstand		IEC 60093	$\Omega \cdot m$	trocken kond.	10 ¹ 10 ¹
Spez. Oberflächenwiderstand		IEC 60093	Ω	kond.	10 ¹
Allgemeine Eigenschaften					
Dichte		ISO 1183	g/cm³	trocken	1.4
Brennbarkeit (UL94)	0.8 mm	ISO 1210	Stufe	-	HI
Wasseraufnahme	23°C/gesätt.	ISO 62	%	-	,
Feuchtigkeitsaufnahme	23°C/50% r.F.	ISO 62	%	-	
Linearer Spritzschwund	längs	ISO 294	%	trocken	0.1
Linearer Spritzschwund	quer	ISO 294	%	trocken	0.5

Produkt-Bezeichnung nach ISO 1874: PA 66+PA 6, MHR, 14-110 N, GF 35

Verarbeitungshinweise für die Spritzgiessverarbeitung von Grilon TSG-35/4 W

Das vorliegende technische Merkblatt für Grilon TSG-35/4 H gibt Ihnen nützliche Hinweise für die Materialvorbereitung, die Maschinenanforderungen, den Werkzeugbau sowie die Verarbeitung.

Silberschlieren am Teil können auch durch Überhitzung der Schmelze (über 350°C) oder durch zu lange Verweilzeit der Schmelze im Zylinder verursacht werden.

MATERIAL VORBEREITUNG

Grilon TSG-35/4 H wird verarbeitungsfertig getrocknet geliefert. Die Säcke sind luftdicht verschweisst. Eine Vortrocknung ist daher nicht erforderlich.

Lagerung

Verschweisste, unbeschädigte Säcke können, witterungsgeschützt, über Jahre gelagert werden. Als Lagerort empfiehlt sich ein trockener Raum, in dem die Säcke auch vor Beschädigung geschützt sind.

Handhabung und Sicherheit

Detaillierte Informationen können aus dem "Material Sicherheitsdatenblatt" (MSDS) entnommen werden, welches mit der Materialbestellung angefordert werden kann.

Trocknung

Grilon TSG-35/4 H wird bei der Herstellung auf einen Wassergehalt von unter 0.10 % getrocknet und luftdicht verpackt. Sollte die Verpackung beschädigt oder das Material zu lange offen gelagert worden sein, so muss das Granulat getrocknet werden. Ein zu hoher Wassergehalt kann sich durch einen beim Ausspritzen ins Freie schäumenden Schmelzekuchen und durch Silberschlieren am Spritzgussteil äußern.

Die Trocknung kann erfolgen im:

Trockenlufttrockner

Temperatur: max. 80°C
Zeit: 4 - 12 Stunden
Taupunkt der Trockenluft: -25°C

Vakuumofen

Temperatur: max. 100°C Zeit: 4 - 12 Stunden

Trockenzeit

Bei nur wenig schäumendem Schmelzekuchen und leichten Silberschlieren am Spritzgussteil kann die minimale Trockenzeit genügen. Bei über Tage offen gelagertem Material mit stark schäumendem Schmelzekuchen, ungewöhnlich dünnflüssiger Schmelze, starken Schlieren und rauher Oberfläche am Spritzgussteil ist die maximale Trockenzeit nötig.

Trocknungstemperatur

Einen Hinweis auf eine oxidative Schädigung von Polyamiden gibt eine bei hellen Farben sichtbare Vergilbung. Im Trockenlufttrockner sollte die maximale Temperatur (80°C) nicht überschritten werden. Im Vakuumofen, bei geringerem Sauerstoffpartialdruck, ist eine höhere Temperatur (100°C) möglich. Um eine Vergilbung bei hellen Farben zu erkennen, ist es sinnvoll, eine kleine Granulatmenge als Vergleichsmuster zurückzuhalten.

Bei längeren Verweilzeiten im Maschinentrichter (über 1 Stunde) ist eine Trichterbeheizung oder ein Trichtertrockner (80°C) sinnvoll.

Wiederverwertung vom Regenerat

Grilon TSG-35/4 H ermöglicht als thermoplastischer Kunststoff eine Aufbereitung fehlerhafter Teile und anteilige Rückführung des Regenerats in den Spritzgiessprozess. Dabei sollen jedoch folgende Punkte berücksichtigt werden:

- Bereits erfolgte Feuchtigkeitsaufnahme
- Regranulierung: Staubanteil und Korngrössenverteilung
- Verschmutzung durch Fremdmaterial, Staub, Öl usw
- Mengenanteil, prozentuale Zugabe zum Originalmaterial
- Farbveränderungen möglich
- Reduzierung der mechanischen Eigenschaften

Bei der Zuführung von Regenerat muss der Verarbeiter besondere Sorgfalt walten lassen.

MASCHINENANFORDERUNGEN

Grilon TSG-35/4 H lässt sich auf allen für Polyamid geeigneten Spritzgiessmaschinen verarbeiten.

Schnecke

Verschleissgeschützte Universalschnecken mit Rückstromsperre sind zu empfehlen (3 Zonen).

Schnecke

Länge: 18 D - 22 D Kompressionsverhältnis: 2 - 2.5

Schussvolumen

Der Dosierweg muss in jedem Fall (ohne Dekompressionsweg) länger sein als die Länge der Rückstromsperre.

Auswahl der Spritzeinheit

Schussvolumen = 0.5 - 0.8 x max. Dosiervolumen der Spritzeinheit

Heizung

Mindestens drei separat regelbare Heizzonen sollten Zylindertemperaturen von bis zu 350°C erzeugen können. Eine separate Düsenheizung ist notwendig. Der Zylinderflansch muss temperierbar sein (Stockkühlung).

Düse

Offene Düsen sind einfach aufgebaut, strömungsgünstig und sehr langlebig. Es besteht jedoch die Gefahr, dass beim nötigen Schneckenrückzug nach dem Dosieren (Dekompression) Luft mit eingezogen wird. Aus diesem Grunde werden häufig Nadelverschlussdüsen eingesetzt.

Zuhaltekraft

Die Maschinenzuhaltekraft kann nach folgender Faustformel abgeschätzt werden:

Zuhaltekraft

 $7.5~\text{kN}^{1)}~\text{x}$ projizierte Fläche (cm 2)

1) Forminnendruck 750 bar

WERKZEUGBAU

Für die Auslegung der Werkzeuge gelten die für glasfaserverstärkte Thermoplaste üblichen Richtlinien.

Für die formbildenden Bereiche genügen übliche verschleissfeste Werkzeugstähle (durchhärtende Stähle, Einsatzstähle etc.), welche auf ca. 56 HRC gehärtet werden sollten. Zusätzlichen Verschleissschutz empfehlen wir in Bereichen mit hoher Strömungsgeschwindigkeit (z.B. Punktanschnitt, Heisskanaldüsen).

Entformung / Entformungsschrägen

Die Ausformschräge beträgt bei Spritzgiesswerkzeugen für Polyamid im allgemeinen 0.5 - 3°. Für geätzte Oberflächenstrukturen (Kavität) gilt die Faustformel: Pro 1° Wandkonizität max. 0.025 mm Ätztiefe.

(VDI 3400)	12	15	18	21	24	27
Rauhtiefe (µm)	0.4	0.6	0.8	1.1	1.6	2.2
Entformungsschräge (%)	1	1	1.1	1.2	1.3	1.5

(VDI 3400)	30	33	36	39	42	45
Rauhtiefe (µm)	3.2	4.5	6.3	9	13	18
Entformungsschräge (%)	1.8	2	2.5	3	4	5

Entlüftung

Für Grilon TSG-35/4 H soll besonders im Bereich der Bindenähte grosszügig entlüftet werden. Zusätzlich freigeschliffene Ausstosser und Entlüftungsschlitze in der Trennebene sind vorzusehen (0.02 mm).

Anguss / Anschnitt

Ein zentraler Stangenanguss im Bereich der grössten Wanddicke ist der sicherste Weg zu guter Formfüllung und zur Vermeidung von Einfallstellen. Punktanschnitt (direkt) oder Tunnelanguss sind aber wirtschaftlicher und auch bei technischen Teilen üblich.

Um ein zu frühes Einfrieren zu vermeiden und um die Formfüllung nicht zu erschweren, gilt:

Anschnittdurchmesser

0.8 x grösste Wanddicke des Spritzgiessteils

Angussdurchmesser

1.4 x grösste Wanddicke des Spritzgiessteils (jedoch mindestens 4 mm)

VERARBEITUNG

Formfüllung, Nachdruck und Dosieren

Beste Teileoberfläche und hohe Bindenahtfestigkeit werden mit hoher Einspritzgeschwindigkeit und genügend lang wirksamen Nachdruck erreicht. Die Einspritzgeschwindigkeit sollte gegen Ende des Füllvorgangs abgestuft sein, um Materialverbrennungen zu vermeiden. Für das Dosieren bei niedriger Drehzahl und geringem Staudruck sollte die Kühlzeit voll ausgenutzt werden.

Grundeinstellungen

Masse

Als Grundeinstellung für die Verarbeitung von Grilon TSG-35/4 H hat sich folgendes Profil bewährt.

_ remperaturen	
Flansch	60 - 80°C
Zone 1	275°C
Zone 2	285°C
Zone 3	295°C
Düse	290°C
Werkzeug	80 - 100°C

285 - 300°C

Druck / Geschwindigkeiten

Einspritzgeschwindigkeit Nachdruck (spez.) 300 - 800 bar Staudruck (hydr.) 5 - 15 bar Schneckendrehzahl 50 - 100 min⁻¹

KUNDENDIENSTLEISTUNGEN

EMS-GRIVORY ist Spezialist in der Polyamidsynthese und Polyamidverarbeitung. Unsere Dienstleistungen umfassen nicht nur die Herstellung und Lieferung von technischen Thermoplasten, wir bieten vielmehr auch eine vollständige technische Unterstützung an:

- Rheologische Formteilauslegung / FEM
- Prototypenwerkzeuge
- Materialauswahl
- Verarbeitungsunterstützung
- Formteil- und Werkzeugdesign

Wir beraten Sie gerne. Nehmen Sie einfach Kontakt mit unseren Verkaufsbüros auf.

Die vorliegenden Daten und Empfehlungen entsprechen dem heutigen Stand unserer Erkenntnisse, eine Haftung in Bezug auf Anwendung und Verarbeitung kann jedoch nicht übernommen werden.

HEME/02.2008 www.emsgrivory.com